Decay Estimates for Variable Coefficient Wave Equations in Exterior Domains

نویسندگان

  • JASON METCALFE
  • DANIEL TATARU
چکیده

In this article we consider variable coefficient, time dependent wave equations in exterior domains R × (R \ Ω), n ≥ 3. We prove localized energy estimates if Ω is star-shaped, and global in time Strichartz estimates if Ω is strictly convex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Generalized Diffusion Phenomenon and Applications

We study the asymptotic behavior of solutions to dissipative wave equations involving two non-commuting self-adjoint operators in a Hilbert space. The main result is that the abstract diffusion phenomenon takes place, as solutions of such equations approach solutions of diffusion equations at large times. When the diffusion semigroup has the Markov property and satisfies a Nash-type inequality,...

متن کامل

Global Existence for High Dimensional Quasilinear Wave Equations Exterior to Star-shaped Obstacles

1. Introduction. The purpose of this article is to study long time existence for high dimensional quasilinear wave equations exterior to star-shaped obstacles. In particular, we seek to prove exterior domain analogs of the four dimensional results of [5] where the nonlinearity is permitted to depend on the solution not just its first and second derivatives. Previous proofs in exterior domains o...

متن کامل

An Application of Kubota-yokoyama Estimates to Quasilinear Wave Equations with Cubic Terms in Exterior Domains

Small global solutions for quasilinear wave equations are considered in three space dimensions in exterior domains. The obstacles are compact with smooth boundary and the local energy near the obstacles is assumed to decay exponentially with a possible loss of regularity. The null condition is needed to show global solutions for quadratic nonlinearities.

متن کامل

Decay Estimates for Wave Equations with Variable Coefficients

We establish weighted L2−estimates for dissipative wave equations with variable coefficients that exhibit a dissipative term with a space dependent potential. These results yield decay estimates for the energy and the L2−norm of solutions. The proof is based on the multiplier method where multipliers are specially engineered from asymptotic profiles of related parabolic equations.

متن کامل

9 J ul 2 01 7 DECAY ESTIMATES FOR WAVE EQUATION WITH A POTENTIAL ON EXTERIOR DOMAINS

The purpose of the present paper is to establish the local energy decay estimates and dispersive estimates for 3-dimensional wave equation with a potential to the initial-boundary value problem on exterior domains. The geometrical assumptions on domains are rather general, for example non-trapping condition is not imposed in the local energy decay result. As a by-product, Strichartz estimates i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008